
Idiomatic Python
Properties and Descriptors

Richard E Sarkis
Rochester’s Python User Group
September 17th, 2013 Meeting

Overview

• Python has many powerful built-in capabilities

• Comprehensions

• Properties

• Decorators

• …many more

Overview

• In particular, many are familiar with decorators
and properties

• …but not descriptors, a mysterious feature of
the core language.

• Esoteric, and not-well-known use cases

• Odd syntax

• Hard to find examples in OSS world

Descript(or)(ion)

In general, a descriptor is an object attribute with
“binding behavior”, one whose attribute access has
been overridden by methods in the descriptor
protocol. Those methods are __get__(), __set__(),
and __delete__(). If any of those methods are
defined for an object, it is said to be a descriptor.

http://docs.python.org/2/reference/datamodel.html#object.__get__
http://docs.python.org/2/reference/datamodel.html#object.__set__
http://docs.python.org/2/reference/datamodel.html#object.__delete__

The Point

• Descriptors are reusable properties, defining a
protocol for object access

• Allows you to call custom methods when trying
to access, assign to or delete an instance

• This is an awesome thing…but why?

Figure 1

file://localhost/Users/rich/Desktop/figure1.py

Properties

Properties

• Properties masquerade function calls as
attributes

• Let’s say we want to organize information about
movies, and we construct a class as seen in
Figure 2.

• In the use of our class, we’d like to prevent the
assignment of negative numbers to movies. How
do we forbid this?

Figure 2

Properties Use Case

• What if other parts of our code assign to
Movie.budget directly?

• Our class catches negative numbers on
__init__ only.

• But not when someone tries assign

m.budget = -100

Figure 3

Properties Solve The
Problem!

• Introducing: setters and getters (and deleters)

• getter methods are specified with the @property
decorator

• setter methods, with a @budget.setter
decorator

• deleter methods, with a @budget.deleter
decorator

Figure 4

Properties Solve The
Problem!

• Without this, we’d have:

• To hide our instance attributes (but Python
doesn’t have private namespaces!)

• Create explicit set_budget and get_budget
methods

Figure 5

Nice, eh?

Or not. Don’t go bananas yet!

• Properties are not reusable

• If we wanted to add a positive number check to
rating, runtime and gross fields, we’d have
this…

Figure 6

Descriptors

Enter Descriptors

• Descriptors solve the reusability problem of
properties

• Generalizes your property logic into separate
classes

• For example…

Figure 7

New Syntax

• The NonNegative class is a descriptor, because it
defines __get__, __set_ or __delete__

• Look how nice the Movie class looks now!

• and negative values are detected across the
board

Accessing a descriptor

• ‘Getting’ with descriptors

• If we print m.budget Python recognizes the
descriptor through its __get__ method.

• So, instead of passing m.budget directly to
print, Movie.budget.__get__ is called
instead, passing to print the return value of
that call.

• It is similar to how properties work — indirect

Accessing a descriptor

• The __get__ method takes two arguments
(using m.budget as our example):

• The instance object on the left — m

• The class object of that instance — Movie

• Called the ‘owner’ of the descriptor

• also: Movie.budget.__get__(None,
Movie)

Figure 8

Assigning to a descriptor

• ‘Setting’ with descriptors

• If we set m.rating = 100 Python recognizes
the descriptor through its __set__ method.

• Won’t overwrite the descriptor object assigned
to m.rating

• Instead, Movie.rating.__set__(m, 100) is
called.

Assigning to a descriptor

• The __set__ method takes two arguments
(using m.rating = 100 as our example):

• The instance object on the left — m

• The value assigned — 100

Figure 9

Deleting with a descriptor

• ‘Deleting’ with descriptors

• If we set del(m.runtime)Python recognizes
the descriptor through its __delete__
method.

• Won’t delete the descriptor object assigned to
m.runtime

• Instead, Movie.runtime.__delete__(m) is
called.

Putting it together

• Each instance of NonNegative maintains a
WeakKeyDictionary to map owner instances to
data values

• When m.budget is called, the __get__ method
looks up data associated with m and returns the
result

• The __set__ method is similar, but has the non-
negative check

Putting it together

• Why use WeakKeyDictionary?

• May cause a memory leak of holding a
reference to an object sitting unused in the
descriptors dictionary

Putting it together

• Descriptors are required to be assigned at the
class-level

• Because of this, every instance of our class
Movie will share the same instance of the
descriptors.

• That’s why we pass in the object reference
when calling __get__, __set__, and
__delete__

Semi-Conclusion

• Properties and descriptors are powerful tools for
idiomatic Python programming

• If you find that your properties are repeating
the same logic, try refactoring to descriptors

Tips

• Descriptors at the class level

• They must be defined at the class level,
otherwise __get__, __set__, and __delete__
won’t be invoked

Figure 10

Tips

• Descriptors need to handle multiple
instances

• Each instance of the class using descriptors
needs to store and reference instance-specific
values assigned to it.

• Hence, the dictionary we discussed

• This is the most awkward bit of descriptors

Figure 11

Tips

• Beware un-hashable descriptor owners

• The MoProblems class is subclassed from list,
which isn’t a hashable object

• As such, they cannot be used as keys in a
dictionary

Figure 12

Tips

• Beware un-hashable descriptor owners

• We can get around this with ‘labeling’ our
descriptors

• Without descriptors, Python would access f.x
as f.__dict__[‘x’]

• With descriptors, this is not used so we can
safely store our values in that key

• It is fragile, subtle and apparently common.

Figure 14

Tips

• Labeled descriptors with Metaclasses

• Since descriptor labels match the variable
name they are assigned to, metaclasses can
handle the bookkeeping automatically.

• A bit beyond the scope of our talk

Figure 15

Tips

• Accessing descriptor methods

• Descriptors are just classes

• However, __get__, __set__, and __delete__
are always called, shrouding any access to
other methods, and thus unreachable!

• The solution is to attack this from the class-
level

Figure 16

Demystification

• When looking up a member using x.y, Python
searches for the member in the instance
dictionary

• Failing that, it looks for it in the class dictionary

• If it is in the class dictionary, and implements
the descriptor protocol, it goes for it

Figure 16

Conclusion

• Descriptors are used in Python to implement
properties, bound methods, static methods,
class methods and slots, and more

• They’re used everywhere!

Figure 17

References

• Python Descriptors Demystified

• http://bit.ly/RocPySept17Ref1

• Descriptor HowTo Guide

• http://bit.ly/RocPySept17Ref2

http://docs.python.org/2/howto/descriptor.html#id1
http://bit.ly/RocPySept17Ref2

