Idiomatic Python

Properties and Descriptors

Richard E Sarkis

Rochester's Python User Group
September 17th, 2013 Meeting



Overview

e Python has many powerful built-in capabilities
e Comprehensions
e Properties
e Decorators

* ...Mmanymore



Overview

e [n particular, many are familiar with decorators
and properties

e ...butnotdescriptors, a mysterious feature of
the core language.

e [soteric, and not-well-known use cases
e (Odd syntax

e Hard to find examples in OSS world



In general, a descriptor is an object attribute with
“binding behavior’, one whose attribute access has
been overridden by methods in the descriptor

protocol. Those methods are __get__ (), __set__(),

and __delete__().If any of those methods are
defined for an object, it is said to be a descriptor.


http://docs.python.org/2/reference/datamodel.html#object.__get__
http://docs.python.org/2/reference/datamodel.html#object.__set__
http://docs.python.org/2/reference/datamodel.html#object.__delete__

The Point

e Descriptors are reusable properties, defining a
orotocol for object access

e Allows you to call custom methods when trying
to access, assign to or delete an instance

e Thisisanawesome thing...but why?


file://localhost/Users/rich/Desktop/figure1.py

Properties



Figure 2

Properties masquerade function calls as
attributes

Let’s say we want to organize information about
movies, and we construct a class as seen in
Figure 2.

In the use of our class, we'd like to prevent the
assignment of negative numbers to movies. How
do we forbid this?



Properties Use Case

e \Whatif other parts of our code assign to
Movie.budget directly?

e Qur class catches negative numbers on
__init__ only.

e But not when someone tries assign

m.budget = -100



Properties Solve The
Problem!

Introducing: setters and getters (and deleters)

getter methods are specified with the @property
decorator

setter methods, with a @budget.setter
decorator

deleter methods, with a @budget.deleter
decorator



Properties Solve The
Problem!

Without this, we'd have:

e J0 hide our instance attributes (but Python
doesn't have private namespaces!)

e (reate explicit set_budget and get_budget
methods



Nice, eh?



Or not. Don’t go bananas yet!

e Properties are not reusable

e |fwe wanted to add a positive number check to

rating, runtime and gross fields, we'd have
this. ..



Descriptors



Enter Descriptors

Descriptors solve the reusability problem of
oroperties

e (eneralizes your property logic into separate
classes

e Forexample...



New Syntax

e The NonNegative class is a descriptor, because it
defines __get__, _set_or __delete__

e | ook how nice the Movie class looks now!

e and negative values are detected across the
board



Accessing a descriptor

e ‘Getting' with descriptors

e [fweprint m.budget Python recognizes the
descriptor through its __get__ method.

e 50, instead of passing m.budget directly to
print, Movie.budget.__get__ is called
instead, passing to print the return value of
that call.

e [tissimilarto how properties work — indirect



Accessing a descriptor

e The__get__ method takes two arguments
(Uusing m.budget as our example):

e Theinstance object on the left —m

e The class object of that instance — Moviie

o (alled the'owner'of the descriptor

e 3|so:Movie.budget.__get__(None,
Movie)



Assigning to a descriptor

e ‘Setting with descriptors

e [fwesetm.rating = 100 Python recognizes
the descriptor through its __set__ method.

e Won't overwrite the descriptor object assigned
tOm.rating

e [nstead, Movie.rating.__set__(m, 100) is
called.



Assigning to a descriptor

e The __set__ method takes two arguments
(usingm.rating = 100 as our example):

e Theinstance object on the left — m

e Thevalue assigned — 100



Deleting with a descriptor

e 'Deleting’with descriptors

e [fwesetdel(m.runtime)Python recognizes

the descriptor through its __delete__
method.

e Won't delete the descriptor object assigned to
m.runtime

e |nstead, Movie.runtime.__delete__(m) is
callea.



Putting 1t together

e Fachinstance of NonNegative maintains a

WeakKeyDictionary to map owner instances to
data values

e \When m.budget is called, the __get__ method

looks up data associated with m and returns the
result

e The _set__ methodis similar, but has the non-
negative check



Putting 1t together

e Why use WeakKeyDictionary?

e May cause a memory leak of holding a
reference to an object sitting unused in the
descriptors dictionary



Putting 1t together

e Descriptors are required to be assigned at the
class-level

e Because of this, every instance of our class
Movie will share the same instance of the
descriptors.

e That's why we pass in the object reference

when calling __get__, __set__,and
__delete_ _



e Properties and descriptors are powerful tools for
idiomatic Python programming

e [fyou find that your properties are repeating
the same logic, try refactoring to descriptors



T1ps

e Descriptors at the class level

e They must be defined at the class level,

otherwise __get__, __set__,and __delete__
won't be invoked



T1ps

e Descriptors need to handle multiple
instances

e FEachinstance of the class using descriptors
needs to store and reference instance-specific
values assigned to it.

e Hence, the dictionary we discussed

e Thisis the most awkward bit of descriptors



T1ps

e Beware un-hashable descriptor owners

e The MoProblems class is subclassed from list,
which isnt a hashable object

e Assuch, they cannot be used as keys in a
dictionary

Figure 12



T1ps

e Beware un-hashable descriptor owners

e \We can get around this with ‘labeling’ our
descriptors

e \Without descriptors, Python would access f. x
as f.__dict__[‘x’_

e With descriptors, this is not used so we can
safely store our values in that key

e [tisfragile, subtle and apparently common.

Figure 14



T1ps

e Labeled descriptors with Metaclasses

e Since descriptor labels match the variable
name they are assigned to, metaclasses can
handle the bookkeeping automatically.

e A Dbit beyond the scope of our talk

Figure 15



T1ps

e Accessing descriptor methods

e Descriptors are just classes

e However, __get__, _set__,and __delete__
are always called, shrouding any access to
other methods, and thus unreachable!

e The solution is to attack this from the class-
leve|

Figure 16



Demystification

e When looking up a member using x.y, Python
searches for the member in the instance
dictionary

e Failing that, it looks for it in the class dictionary

e I[fitisinthe class dictionary, and implements
the descriptor protocol, it goes for it

Figure 16



Conclusion

e Descriptors are used in Python to implement
oroperties, bound methods, static methods,
class methods and slots, and more

e They're used everywhere!

Figure 17



Refterences

e Python Descriptors Demystified

* http://bit.ly/RocPySeptl7Refl

e Descriptor Howlo Guide

* http://bit.ly/RocPySeptl7Ref?2


http://docs.python.org/2/howto/descriptor.html#id1
http://bit.ly/RocPySept17Ref2

