
Wat's up,
__doc__!?
Python "Gotchas"

Richard E Sarkis
Rochester’s Python User Group
October 20th, 2015 Meeting

Pragmatic Mistakes

• Typing shell commands at the Interactive Prompt

• Print Statements are Required in Files (Only)

• Beware of Automatic Extensions on Windows

• Program-File Icon Click Pitfalls on Windows

• Imports Only Work the First Time

• Blank Lines Matter at the Interactive Prompt (Only)

Coding Mistakes

• Don't Forget the Colons

• Initialize Your Variables

• Start in Column 1

• Indent Consistently

• Always Use Parentheses to Call a Function

• Don't Use Extensions or Paths in Imports

• Don't Code C in Python

Common Programming
Mistakes

Common Programming
Mistakes

• File-Open Calls Do Not Use the Module Search
Path

• When you use the open() call in Python to access an
external file, Python does not use the module
search path to locate the target file. It uses an
absolute path you give, or assumes the filename is
relative to the current working directory. The
module search path is consulted only for module
imports.

Common Programming
Mistakes

• Methods Are Specific to Types

• You can't use list methods on strings, and vice versa.
In general, methods calls are type-specific, but built-
in functions may work on many types. For instance,
the list reverse method only works on lists, but the
len function works on any object with a length.

Common Programming
Mistakes

• Immutable Types Can't Be Changed in Place

• Remember that you can't change an immutable
object (e.g., tuple, string) in place:

T = (1, 2, 3)
T[2] = 4 # Error

Common Programming
Mistakes

• Immutable Types Can't Be Changed in Place

• Construct a new object with slicing, concatenation,
and so on, and assign it back to the original variable
if needed. Because Python automatically reclaims
unused memory, this is not as wasteful as it may
seem:

T = T[:2] + (4,)
Okay: T becomes (1, 2, 4)

Common Programming
Mistakes

• Use Simple for Loops Instead of while or range

S = "lumberjack"

for c in S: print c # simplest

for i in range(len(S)): print S[i] # too much

i = 0 # too much
while i < len(S): print S[i]; i += 1

Common Programming
Mistakes

• Don't Expect Results From Functions That Change
Objects

• In-place change operations such as the
list.append() and list.sort() methods modify an
object, but do not return the object that was
modified (they return None); call them without
assigning the result. It's not uncommon for
beginners to say something like:

mylist = mylist.append(X)

Common Programming
Mistakes

• Don't Expect Results From Functions That Change
Objects

• A more devious example of this pops up when
trying to step through dictionary items in sorted-
key fashion:

D = {...}
for k in D.keys().sort(): print D[k]

Common Programming
Mistakes

• Don't Expect Results From Functions That Change
Objects

• This almost works -- the keys method builds a keys
list, and the sort method orders it -- but since the
sort method returns None, the loop fails because it
is ultimately a loop over None (a nonsequence).

Ks = D.keys()
Ks.sort()
for k in Ks: print D[k]

Common Programming
Mistakes

• Conversions Only Happen Among Number Types

• In Python, an expression like 123 + 3.145 works -- it
automatically converts the integer to a floating
point, and uses floating point math. On the other
hand, the following fails:

S = "42"
I = 1
X = S + I # A type error

Common Programming
Mistakes

• Conversions Only Happen Among Number Types

• This is also on purpose, because it is ambiguous:
should the string be converted to a number (for
addition), or the number to a string (for
concatenation)? In Python, we say that explicit is
better than implicit (that is, EIBTI), so you must
convert manually:

X = int(S) + I # Do addition: 43
X = S + str(I) # Do concatenation: "421"

Common Programming
Mistakes

• Cyclic Data structures Can Cause Loops

• Although fairly rare in practice, if a collection object
contains a reference to itself, it's called a cyclic
object. Python prints a [...] whenever it detects a
cycle in the object, rather than getting stuck in an
infinite loop:

>>> L = ['grail'] # Append reference back to L
>>> L.append(L) # Generates cycle in object
>>> L
['grail', [...]]

Common Programming
Mistakes

• Assignment Creates References, Not Copies

>>> L = [1, 2, 3] # A shared list object
>>> M = ['X', L, 'Y'] # Embed a reference to
L
>>> M
['X', [1, 2, 3], 'Y']

>>> L[1] = 0 # Changes M too
>>> M
['X', [1, 0, 3], 'Y']

Common Programming
Mistakes

• Assignment Creates References, Not Copies

>>> L = [1, 2, 3]
>>> M = ['X', L[:], 'Y'] # Embed a copy of L

>>> L[1] = 0 # Change only L, not M
>>> L
[1, 0, 3]
>>> M
['X', [1, 2, 3], 'Y']

Common Programming
Mistakes

• Local Names Are Detected Statically

• Python classifies names assigned in a function as
locals by default; they live in the function's scope
and exist only while the function is running.
Technically, Python detects locals statically, when it
compiles the defs code, rather than by noticing
assignments as they happen at runtime. This can
also lead to confusion if it's not understood.

Common Programming
Mistakes

• Local Names Are Detected Statically

>>> X = 99
>>> def func():
... print X # Does not yet exist
... X = 88 # Makes X local in entire
def
...
>>> func() # Error!

Common Programming
Mistakes

• Defaults and Mutable Objects

• Default argument values are evaluated and saved
once, when the def statement is run, not each time
the function is called. That's usually what you want,
but since defaults retain the same object between
calls, you have to be mindful about changing
mutable defaults.

Common Programming
Mistakes

• Defaults and Mutable Objects

>>> def saver(x=[]): # Saves away a list object
... x.append(1) # and changes it each time
... print x
...
>>> saver([2]) # Default not used
[2, 1]
>>> saver() # Default used
[1]
>>> saver() # Grows on each call!
[1, 1]
>>> saver()
[1, 1, 1]

Common Programming
Mistakes

• Defaults and Mutable Objects

• Some see this behavior as a feature -- because
mutable default arguments retain their state between
function calls, they can serve some of the same roles
as static local function variables in the C language.
However, this can seem odd the first time you run
into it, and there are simpler ways to retain state
between calls in Python (e.g., classes)

Common Programming
Mistakes

• Defaults and Mutable Objects

>>> def saver(x=None):
... if x is None: x = [] # No arg passed?
... x.append(1) # Changes new list
... print x
...
>>> saver([2]) # Default not used
[2, 1]
>>> saver() # Doesn't grow now
[1]
>>> saver()
[1]

Common Programming
Mistakes

• Using class variables incorrectly

>>> class A(object):
... x = 1
...
>>> class B(A):
... pass
...
>>> class C(A):
... pass
...
>>> print A.x, B.x, C.x
1 1 1

Common Programming
Mistakes

• Misunderstanding Python scope rules

>>> x = 10
>>> def foo():
... x += 1
... print x
...
>>> foo()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in foo
UnboundLocalError: local variable 'x' referenced
before assignment

Common Programming
Mistakes

• Modifying a list while iterating over it

>>> odd = lambda x : bool(x % 2)
>>> numbers = [n for n in range(10)]
>>> for i in range(len(numbers)):
... if odd(numbers[i]):
... del numbers[i] # BAD: Deleting item
from a list while iterating over it
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
IndexError: list index out of range

Wat

Converting to a string and
back

>>> bool(str(False))
???

Mixing integers with strings

>>> int(2 * 3)
???
>>> int(2 * '3')
???
>>> int('2' * 3)
???

The undocumented converse
implication operator

>>> False ** False == True
???
>>> False ** True == False
???
>>> True ** False == True
???
>>> True ** True == True
???

Mixing numerical types

>>> x = (1 << 53) + 1
>>> x + 1.0 < x
???

Operator precedence?

>>> False == False in [False]
???

Iterable types in comparisons

>>> a = [0, 0]
>>> (x, y) = a
>>> (x, y) == a
???

>>> [1,2,3] == sorted([1,2,3])
???
>>> (1,2,3) == sorted((1,2,3))
???

Types of arithmetic
operations

>>> type(1) == type(-1)
???
>>> 1 ** 1 == 1 ** -1
???
>>> type(1 ** 1) == type(1 ** -1)
???

Fun with iterators

>>> a = 2, 1, 3
>>> sorted(a) == sorted(a)
???
>>> reversed(a) == reversed(a)
???

>>> b = reversed(a)
>>> sorted(b) == sorted(b)
???

Circular types

>>> isinstance(object, type)
???
>>> isinstance(type, object)
???

extend vs +=

>>> a = ([],)
>>> a[0].extend([1])
>>> a[0]
???
>>> a[0] += [2]
???
>>> a[0]
???

Indexing with floats

>>> [4][0]
???
>>> [4][0.0]
???
>>> {0:4}[0]
???
>>> {0:4}[0.0]
???

all and emptiness

>>> all([])
???
>>> all([[]])
???
>>> all([[[]]])
???

sum and strings

>>> sum("")
???
>>> sum("", ())
???
>>> sum("", [])
???
>>> sum("", {})
???
>>> sum("", "")
???

Comparing NaNs

>>> x = 0*1e400 # nan
>>> len({x, x, float(x), float(x), 0*1e400, 0*1e400})
???
>>> len({x, float(x), 0*1e400})
???

References

• When Pythons Attack: Common Mistakes of Python
Programmers.

• Python wats.

• Become More Advanced: Master the 10 Most
Common Python Programming Mistakes.

• Wat’s up, doc?

http://www.onlamp.com/pub/a/python/2004/02/05/learn_python.html?page=2
https://github.com/cosmologicon/pywat
http://www.toptal.com/python/top-10-mistakes-that-python-programmers-make?utm_source=Engineering+Blog+Subscribers&utm_campaign=51aba2b5ff-Blog_Post_Email_Top10PythonMistakes&utm_medium=email&utm_term=0_af8c2cde60-51aba2b5ff-109835873
http://www.b-list.org/weblog/2015/oct/13/wats-doc/

