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Overview



Concurrency
A property where multiple computations can be executed 
simultaneously.



• Code examples

• https://github.com/RocPy/Topic-Concurrency

https://github.com/RocPy/Topic-Concurrency


• Concurrent techniques used with Python

• We’ll touch on CS topics of concurrency

• Learn some Standard Library tools

• A grand tour of all your options, with advantages and pitfalls.

• This is not proper instruction on concurrent programming and 
parallel computing.

Expectations



Part 1: Concepts



Concurrency

•  A Computer Science term, a property where multiple computations 
are executing simultaneously.

•  There is potential each independent execution to interact with each 
other.

•  Execution units can be multiple cores on a chip, multiple chips in a 
machine, or physically separated processes on different computer 
nodes.



Task

• A set of program instructions loaded into an address space 
(memory) is a Task.

• It can define processes, threads, kernels, etc.



Concurrent Use Cases

• Concurrency: Many units of computation that are fairly independent 
of each other

• e.g.  A web server handling thousands of connected clients

• Parallelism: Breaking down one large computation into smaller units 
of computation

• e.g. Image analysis
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Task Execution
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I/O Bound
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Part 2: Concurrency



Why Python?

• Sadly, Python and “High Performance” seem orthogonal.

• Isn’t that what concurrent programming is all about?

• Python is interpreted

• Hardware giveth. Software taketh away.

http://www.cougarboard.com/board/message.html?id=2792505


Why Python?

• High Level

• Large Library

• “The library makes the language”

• We have our reasons.



As a glue language

• A high-level framework

• A mix of Python, C, C++, Fortran



Programmer Performance

• Programmers revere high-level languages like Python for it’s ability to 
just work, instead of hacking C code all day



Performance is Misunderstood

• Most programs are I/O bound

• They’re mainly idle!

• If I/O is the bottleneck, the the overhead of an interpreter is less 
meaningful.



Unless you’re CPU bound

• If you need CPU power, then extending with C code can be useful

• High performance in Python really comes down to using 
programming in C

• There’s no shame in using the right tool for the right job.



No Concurrency

• Concurrency is not a solution around inefficient algorithms

• Focus on rewriting with a better algorithm, or using a language like 
C

• A C extension might provide a Python script a 20x improvement in 
speed vs. a marginal speedup using parallelization



Part 3: Threads



Threads

• Threads are the most common concurrency idiom

• An independent stream of execution

• It’s own stack, current instruction

• Inside a parent process

• Shares all resources with the main and accessory threads

• memory, files, network connectioncs



Single Thread

• A Python program is started

• Instructions are executed in a “main 
thread”

$ python program.py 
! 

<statement> 
<statement> 

… 
! 

<main thread>



Multi-threading

• A Python program is started

• Instructions are executed in a “main 
thread”

• A second thread is executed, running 
in parallel with the main thread.

• Function foo() is executed

$ python program.py 
! 

statement 
statement 

… 
! 

create thread(foo) def foo(): 
  <statements>



Multi-threading

• A Python program is started

• Instructions are executed in a “main 
thread”

• A second thread is executed, running 
in parallel with the main thread.

• Function foo() is executed

$ python program.py 
! 

statement 
statement 

… 
! 

create thread(foo) 
statement 
statement 

… 
!

def foo(): 
  statement 
  statement 

… 
!



Multi-threading

• A child thread terminates on return 
or exit

• A thread is a “mini-process”, a form 
of a task that runs independently 
inside your program

$ python program.py 
! 

statement 
statement 

… 
! 

create thread(foo) 
statement 
statement 

… 
! 

statement 
statement 

… 
!

def foo(): 
  statement 
  statement 

… 
! 

return or exit



threading module

• The idiomatic method of accessing 
threads in Python.

• Inherit threading.Thread and 
override run() 

• The content in run() executes in a 
thread

import time 
import threading 

class CountdownThread(threading.Thread): 
    def __init__(self,count): 
        threading.Thread.__init__(self) 
        self.count = count 
    def run(self): 
        while self.count > 0: 
            print "Counting down", self.count 
            self.count -= 1 
            time.sleep(5) 
        return 



threading module

import time 
import threading 

class CountdownThread(threading.Thread): 
    def __init__(self,count): 
        threading.Thread.__init__(self) 
        self.count = count 
    def run(self): 
        while self.count > 0: 
            print "Counting down", self.count 
            self.count -= 1 
            time.sleep(5) 
        return 

t1 = CountdownThread(10)  # Create the thread object 
t1.start()                # Launch the thread 
t2 = CountdownThread(20)  # Create another thread 
t2.start()                # Launch



threading module

• Functions as threads is an alternative 
method

• The created Thread object assigns run 
to the given function passed in as the 
target named parameter.

import time 
import threading 

def countdown(count): 
    while count > 0: 
        print "Counting down", count 
        count -= 1 
        time.sleep(5) 

t1 = threading.Thread(target=countdown,args=(10,)) 
t1.start()



Join The Club

• Threads run independently

• The join() method to wait for a 
thread to exit 

• Joining can only happen from outside 
from outside threads, not the joining 
thread.

t.start() # Launch a thread ... 
# Do other work 
… 

# Wait for thread to finish 
t.join() # Waits for thread t to exit 



What an excellent day for an 
exorcism.

• Threads run in a daemon mode will 
not prevent your program from hanging 
on exit

• Good for background utility tasks that 
require no cleanup — “Set it and forget 
it!”

t.daemon = True 
t.setDaemon(True) 



easy-peasy(-lemon-squeezy)

• Starting threads is easy

• Making many thousands of threads is easy

• The whole idea of threads sounds like a dream!

• But really, it’s a nightmare in disguise…

• Keeping your program state coherent between many threads — 
that’s really hard



Q:  Why did the multithreaded chicken cross the road?  
A:  to To other side. get the 

- Jason Whittington



Shared Data Between Threads

• All threads in a process share access to that process’ memory

• Non-deterministic

• Thread scheduling

• Access to shared data

• Most operations are non-atomic



Shared Data Conflicts

• Consider the shared memory address 
in variable x

• We have two threads that modify the 
value at that memory address 

• Likely, we’ve corrupted that value in a 
non-deterministic way

x = 0 

Thread-1   Thread-2  

--------   --------  

 ...       ...  

 x = x+1   x = x-2  

 ...       ...



Shared Data Conflicts
Thread-1   Thread-2  
--------   --------  
 ...       ...  
 x = x+1   x = x-2  
 ...       ... 

Thread-1                 Thread-2  
--------                 --------  
LOAD_GLOBAL  1 (x)        
LOAD_CONST      2 (1)       
                             LOAD_GLOBAL  1 (x) 
                             LOAD_CONST   2 (1) 
                             BINARY_SUB 
                             STORE_GLOBAL 1 (x) 

BINARY_ADD 
STORE_GLOBAL 1 (x) 

thread switch

thread switch



Example
x = 0     # A shared value 

COUNT = 10000000 
def foo(): 
    global x 
    for i in xrange(COUNT): 
        x += 1 

def bar(): 
    global x 
    for i in xrange(COUNT): 
        x -= 1 

t1 = threading.Thread(target=foo) 
t2 = threading.Thread(target=bar) 
t1.start(); t2.start() 
t1.join();  t2.join() 
print x     # Expect result = 0



Data corruption due to thread 
scheduling is called 
a Race Condition



Part 4: Synchronization



Gentleman, synchronize your 
Swatches

- Parker Lewis



Thread Synchronization

• Avoid race conditions (and losing chunks of your life trying to find 
them) by using thread synchronization techniques and primitives



Thread Synchronization

• The threading library has the following options for thread 
synchronization

• threading.Lock() 

• threading.RLock() 

• threading.Semaphore() 

• threading.BoundedSemaphore() 

• threading.Event() 

• threading.Condition()



A Tour

• There are many options to choose from with subtleties that may 
make it difficult to choose the right one for synchronization



Mutex    Locks



Mutual Exclusion Locks

• The most commonly used synchronization primitive 

m = threading.Lock() 

• Used to synchronize threads as to allow only one thread permission 
to modify shared data at a given moment



Mutual Exclusion Locks

• Basic Usage 
m = threading.Lock() 
m.acquire() 
m.release() 

• Only one thread can acquire a lock at a time

• Attempts to acquire by a second (or more) threads results in a 
blocking action until the lock is released



Using Mutex Locks

• Used for creating a critical section 
block

• Only one thread can execute in a 
critical section at a time (i.e. lock 
gives exclusive access)

x = 0 

x_lock = threading.Lock() 

Thread-1             Thread-2  

--------             --------  

 ...                 ...  

 x_lock.acquire()    x_lock.acquire() 

 x = x+1             x = x-2  

 x_lock.release()    x_lock.release() 

 ...                 ... Critical Section



Lock Management

• Always release your locks

• Non-linear flow-control can add pain 
and suffering

• A Pythonic template for a critical 
section should be used

x=0 
x_lock = threading.Lock() 

# Example critical section 
x_lock.acquire() 
try: 
    statements using x 
finally: 
    x_lock.release()



Lock Management

• Python 2.6 and 3.0 improves the 
semantics for dealing with locks and 
critical sections

• The lock is acquired automatically, and 
released when the block exits

x=0 
x_lock = threading.Lock() 

# Critical section 
with x_lock: 
    <statements using x> 



Deadlocks

• Using nesting locks is a bad and 
confusing idea

• Expect deadlocks in such situations!

x=0 
y=0 
x_lock = threading.Lock()  
y_lock = threading.Lock() 

with x_lock: 
    <statements using x> 
    ... 
    with y_lock: 
        <statements using x and y> 
        ... 



Mutex Conclusions

• Like threading, locking is easy to do

• That is, until you need to identify and lock all parts of your code that 
are critical for locking

• It’s another really tricky job



Reentrant Mutex Locks



Reentrant Mutex Lock

• RLock 
m = threading.RLock() # Create a lock 
m.acquire()           # Acquire the lock 
m.release()           # Release the lock 

It extends the normal mutex lock by allowing the lock to be 
acquired multiple times by the same thread

• Each acquire() must be balanced by a matching release() 

• Used commonly for locking code execution, rather than data access



RLock Example

• A monitor object

• Allows only one thread to execute an 
method in a class at a time

• Methods can call other methods that 
are holding the lock in the same thread

 class Foo(object): 
     lock = threading.RLock() 
     def bar(self): 
         with Foo.lock: 
             ... 
     def spam(self): 
         with Foo.lock: 
              ... 
              self.bar() 
              ... 



Semaphores



Counter-based Synchronization

• Semaphore is one of the oldest synchronization primitives in 
computer science (Dijkstra) 
m = threading.Semaphore(n) # Create a semaphore 
m.acquire()               # Acquire 
m.release()               # Release 

• acquire() — if the counter is > 0, decrement by one and return 
immediately. If it is == 0, then block and wait until someone calls 
release() 

• release() — increments the internal counter by one. If the counter is 
zero when called, wake up a waiting thread as well. 



Use cases

• Resource control

• Setting upper-bound limits for such things as network connections 
or database accesses

• Signaling

• Can be used to signal threads into action



Resource Control Example

• Semaphore Resource Control

• Maximum of 5 threads are 
executing this function at once.

• Other threads will wait until a 
semaphore signals a release()

sema = threading.Semaphore(5) 

def fetch_page(url): 
    sema.acquire() 
    try: 
        u = urllib.urlopen(url) 
        return u.read() 
    finally: 
        sema.release() 



Thread Signaling Example

• Semaphore Thread Signaling

• acquire() and release() are in 
two different threads and arbitrary 
order

• Use case: Consumer-Producer 
problems

done = threading.Semaphore(0) 

Thread 1           Thread 2 

...                done.acquire() 
statements         statements 

statements         statements 

statements         statements 

done.release()     ... 



Bounded Semaphores



Semaphore Release Checks

• A minor variation of threading.Semaphore(n), 
threading.BoundedSemaphore(n) 

• An exception is thrown if too many release()’s are called, in which 
case a ValueError exception is called



Events



Events

• Event Objects 
e = threading.Event() 
e.isSet()    # Return True if event set 
e.set()      # Set event 
e.clear()    # Clear event 
e.wait()     # Wait for event 

• Used if multiple threads are waiting for an event to occur

• A set event will unblock all waiting threads

• Commonly used for barriers and notifications



Events Example
init = threading.Event() 

def worker(): 
    init.wait()    # Wait until initialized 
    statements 
    ... 

def initialize(): 
    statements     # Setting up 
    statements 
    ... 
    init.set()     # Done initializing 

Thread(target=worker).start()    # Launch 
workers 
Thread(target=worker).start() 
Thread(target=worker).start() 
initialize()                     # Initialize



Events Example 2

def master(): 
    ... 
    item = create_item() 
    evt = Event() 
    worker.send((item,evt)) 
    ... 
    # Other processing 
    ... 
    ... 
    ... 
    ... 
    ... 
    # Wait for worker 
    evt.wait()

def worker(): 
    item, evt = get_work() 
    <processing> 
    <processing> 
    ... 
    ... 
    # Done 
    evt.set() 



Condition Variables



Conditions

• Condition Objects 
cv = threading.Condition([lock]) 
cv.acquire() # Acquire the underlying lock 
cv.release() # Release the underlying lock 
cv.wait() # Wait for condition 
cv.notify() # Signal that a condition holds 
cv.notifyAll() # Signal all threads waiting 

•Lock and Signaling

•The lock protects critical sections

•The signal notifies other threads that a state condition has changed



Conditions

items = [] 
items_cv = threading.Condition() 

Producer Thread           Consumer Thread 
item = produce_item()     with items_cv: 
with items_cv:                ... 
    items.append(item)        x = items.pop(0)    
                          # Do something with x 
                          ...



Conditions

items = [] 
items_cv = threading.Condition() 

Producer Thread           Consumer Thread 
item = produce_item()     with items_cv: 
with items_cv:                while not items: 
    items.append(item)            items_cv.wait()    
    items_cv.notify()          x = items.pop(0) 
                          # Do something with x 
                          ...



Conditions

Consumer Thread 
with items_cv: 
    while not items: 
        items_cv.wait()    
     x = items.pop(0) 
# Do something with x 
...

• Before waiting, a lock needs to be 
acquired

• Conditions are transient, and a 
verification of the current state is 
needed, served by the while loop

• wait() releases the lock during the 
wait, and re-locks when woken\



Synchronization Conclusions

• Lock, RLock, Condition, Semaphore, and BoundedSemaphore 
objects may be used as with statement context managers

• Synchronization primitives are a necessity to make life easy, but once 
complexity is replaced with another

• Lots of places where things go wrong

• performance, deadlock, livelock, starvation, scheduling

http://docs.python.org/2/library/threading.html#threading.Lock
http://docs.python.org/2/library/threading.html#threading.RLock
http://docs.python.org/2/library/threading.html#threading.Condition
http://docs.python.org/2/library/threading.html#threading.Semaphore
http://docs.python.org/2/library/threading.html#threading.BoundedSemaphore
http://docs.python.org/2/reference/compound_stmts.html#with


Part 5: Queues



Part 6: Unraveled Threads



Bad News

• We’ve established threading as a hornets nest of confusion and 
problems

• Locks, shared data, queues and synchronization primitives all 
working together

• On top of that, Python has it’s own platform specific issues, major 
ones

• Pathological performance!



Performance Example

• Consider this CPU-bound function 
def count(n): 
   while n > 0: 
n -= 1 

• Sequential Execution 
count(100000000) 
count(100000000) 

•Threaded Execution 
t1 = Thread(target=count,args=(100000000,)) 
t1.start() 
t2 = Thread(target=count,args=(100000000,)) 
t2.start()



Unexpected Results

• From David Beazley, http://www.dabeaz.com

• Performance comparison 

• Dual-Core 2Ghz Macbook, OS-X 10.5.6 

Sequential : 24.6s 
Threaded :45.5s (1.8Xslower!)

• With one of the CPU cores disabled: 
Threaded : 38.0s

http://www.dabeaz.com


Part 7: The Inside Story



Nature of Python Threads

• Python threads are real system threads (POSIX pthreads)

• Scheduled by the host kernel

• Python threads represent the threaded execution of the Python 
interpreter process which is written in C



The GIL

• Only one Python thread can execute in the interpreter at a time

• The global interpreter lock carefully controls thread execution

• Ensures that each thread gets exclusive access to all interpreter 
internals when running



I/O Bound GIL Behavior

• When a Python-based thread runs, it holds the GIL

• The GIL is released on any block I/O

• When a thread is forced to wait, an idle thread activates

• Cooperative multitasking
Copyright (C) 2009,  David Beazley, http://www.dabeaz.com

GIL Behavior
• Whenever a thread runs, it holds the GIL

• However, the GIL is released on blocking I/O

85
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• So, any time a thread is forced to wait, other 
"ready" threads get their chance to run 

• Basically a kind of "cooperative" multitasking
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CPU Bound GIL Behavior

• When a thread is CPU-bound, the interpreter periodically checks 
every 100 interpreter “ticks”

Copyright (C) 2009,  David Beazley, http://www.dabeaz.com

CPU Bound Processing

• To deal with CPU-bound threads, the 
interpreter periodically performs a "check"

• By default, every 100 interpreter "ticks"

86
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The Check Interval

• The check interval is independent of thread scheduling, where a 
check is made every 100 ticks 

Copyright (C) 2009,  David Beazley, http://www.dabeaz.com

The Check Interval
• The check interval is a global counter that is 

completely independent of thread scheduling

87
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• A "check" is simply made every 100 "ticks"



The Check Interval

• During this periodic check

• Signal handlers in the main thread execute if there are any pending 
signals

• Release and reacquisition of the GIL

• This is how multiple CPU-bound threads get to run, by briefly 
releasing the GIL, other threads get a chance to run.



Tick

• A Tick has some loose mapping to 
Python interpreter instructions 

def countdown(n): 
        while n > 0: 
            print n 
            n -= 1 

Copyright (C) 2009,  David Beazley, http://www.dabeaz.com

What is a "Tick?"
• Ticks loosely map to interpreter instructions

89

def countdown(n):
    while n > 0:
        print n
        n -= 1

>>> import dis
>>> dis.dis(countdown)
0 SETUP_LOOP              33 (to 36)
3 LOAD_FAST                0 (n)
6 LOAD_CONST               1 (0)
9 COMPARE_OP               4 (>)
12 JUMP_IF_FALSE           19 (to 34)
15 POP_TOP             
16 LOAD_FAST                0 (n)
19 PRINT_ITEM          
20 PRINT_NEWLINE       
21 LOAD_FAST                0 (n)
24 LOAD_CONST               2 (1)
27 INPLACE_SUBTRACT    
28 STORE_FAST               0 (n)
31 JUMP_ABSOLUTE            3
...

Tick 1

Tick 2

Tick 3

Tick 4

• Instructions in 
the Python VM



Tock

• Ticks are not time-based

• Ticks don’t have consistent execution times

• Long operations can block all threads, trying hitting Ctrl-C 

Copyright (C) 2009,  David Beazley, http://www.dabeaz.com

Tick Execution
• Interpreter ticks are not time-based

• Ticks don't have consistent execution times

90

• Long operations can block everything
>>> nums = xrange(100000000)
>>> -1 in nums
False
>>>

1 tick (~ 6.6 seconds)

• Try hitting Ctrl-C (ticks are uninterruptible)
>>> nums = xrange(100000000)
>>> -1 in nums
^C^C^C   (nothing happens, long pause)
...
KeyboardInterrupt
>>>



Scheduling Disaster

• Python does not have a thread scheduler

• No notion of thread priorities, preemption, round-robin scheduling, 
etc.

• All thread scheduling is left to the host OS



GIL Implementation

• The GIL is just a mutex lock

• The Unix implementation is

• A POSIX unnamed semaphore

• or a pthreads condition variable

• All interpreter locking is based on signaling

• To acquire the GIL, check if it is free. If not, sleep and wait for a signal

• To release the GIL, free it and signal



CPU-bound Threads

• CPU-bound threads have horrible performance

• Why?



Signaling Overhead

• GIL thread signaling is the source of that

• After every 100 ticks, the interpreter

• Locks the mutex

• Signals on a condition variable/semaphore where another thread is 
always waiting

• Because of waiting threads, extra pthreads processing and system 
calls are triggered to deliver



Single-Core Measurements
• David Beazley, http://www.dabeaz.com

• Sequential Execution (OS-X, 1 CPU)

• 736 Unix system calls

• 117 Mach System Calls 

• Two threads (OS-X, 1 CPU)

• 1149 Unix system calls

• ~ 3.3 Million Mach System Calls

http://www.dabeaz.com


Multiple-Core Measurements

• David Beazley, http://www.dabeaz.com

• Two threads (OS-X, 1 CPU)

• 1149 Unix system calls

• ~ 3.3 Million Mach System Calls

• Two threads (OS-X, 2 CPUs)

• 1149 Unix system calls

• ~9.5 Million Mach System calls

http://www.dabeaz.com


Multicore GIL Contention

• CPU-bound threads running on multi-core systems get scheduled 
simultaneously on different processors, and there is a GIL storm 

Copyright (C) 2009,  David Beazley, http://www.dabeaz.com

Multicore GIL Contention
• With multiple cores, CPU-bound threads get 

scheduled simultaneously (on different 
processors) and then have a GIL battle

98

Thread 1 (CPU 1) Thread 2 (CPU 2)

Release GIL signal
Acquire GIL Wake

Acquire GIL (fails)
Release GIL
Acquire GIL

signal
Wake
Acquire GIL (fails)

run

run

run

• The waiting thread (T2) may make 100s of 
failed GIL acquisitions before any success



GIL and C

• C/C++ extensions can release the GIL and run independently

• Once released, the C code shouldn’t do any state change in the 
Python interpreter or Python objects

• The C code itself needs to be thread-safe



GIL and C

• It is through C extensions that Python can realize performance 
parallel computing 

Copyright (C) 2009,  David Beazley, http://www.dabeaz.com

The GIL and C Extensions
• Having C extensions release the GIL is how 

you get into true "parallel computing"

100
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Releasing the GIL

• ctypes already releases the GIL when calling C code

• For custom C extensions, you use preprocessor macros 
PyObject *pyfunc(PyObject *self, PyObject *args) { 

       ... 
       Py_BEGIN_ALLOW_THREADS 
       // Threaded C code 
       ... 
       Py_END_ALLOW_THREADS 
       ... 
     }



Why the GIL

• Simplification of Python Interpreter Implementation

• Better suited for Python’s reference counting

• Simplifies use of C/C++ extensions, they don’t need to worry about 
thread synchronization with the interpreter



Part 8:Threading Conclusion



Again, why threads?

• There are areas where threads are useful and perform well



I/O Bound Processing

• Threads are still useful for I/O bound processes

• e.g.  A network server managing thousands of long-lived TCP 
connections, with low CPU overhead

• This case is limited by the host OS’s ability to provided resources

• Most systems handle this kind of case just fine



I/O Bound Processing

• If everything is I/O bound, there is quick response time to any I/O 
activity

• Python, as mentioned earlier, does not do the scheduling

• So, it’s behavior will mimic the performance of a C program with 
a similar I/O boundedness



and Finally…

• Python threads are useful:

• If you use them for I/O bound processing only

• Limit CPU-bound processing to C extensions that release the GIL

• Threads are only one idiom for parallel processing.

• A discussion for another time…



Part 9:Processes and Messages



Part 10:Multiprocessing Module



Part 11:Alternatives



Part 12:Closing
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