
Concurrency with Python
Rochester’s Python User Group
June 18th, 2013 Meeting

Overview

Concurrency
A property where multiple computations can be executed
simultaneously.

• Code examples

• https://github.com/RocPy/Topic-Concurrency

https://github.com/RocPy/Topic-Concurrency

• Concurrent techniques used with Python

• We’ll touch on CS topics of concurrency

• Learn some Standard Library tools

• A grand tour of all your options, with advantages and pitfalls.

• This is not proper instruction on concurrent programming and
parallel computing.

Expectations

Part 1: Concepts

Concurrency

• A Computer Science term, a property where multiple computations
are executing simultaneously.

• There is potential each independent execution to interact with each
other.

• Execution units can be multiple cores on a chip, multiple chips in a
machine, or physically separated processes on different computer
nodes.

Task

• A set of program instructions loaded into an address space
(memory) is a Task.

• It can define processes, threads, kernels, etc.

Concurrent Use Cases

• Concurrency: Many units of computation that are fairly independent
of each other

• e.g. A web server handling thousands of connected clients

• Parallelism: Breaking down one large computation into smaller units
of computation

• e.g. Image analysis

Multitasking

CPU

Task A

Task B

Task SwitchRunning State

Parallelism

CPU 1

Task A

Running State

Task B

CPU 2

Running State

Task Execution

CPU

Task

Kernel

I/O System CallRunning State Sleep

CPU Bound

CPU

Task

Kernel

I/O System CallRunning State Sleep

I/O Bound

CPU

Task

Kernel

I/O System CallRunning State Sleep

Shared Memory
CPU 1

Task A
Running State

Task B
CPU 2

Running State

RAM x = 100

Processes
CPU 1

Task A

Running State

Task B

CPU 2

Running State

RAM IPC

Distributed Computing

Host 1 CPU

Task A
Running State

Task B

Host 2 CPU

Running State

Network

Part 2: Concurrency

Why Python?

• Sadly, Python and “High Performance” seem orthogonal.

• Isn’t that what concurrent programming is all about?

• Python is interpreted

• Hardware giveth. Software taketh away.

http://www.cougarboard.com/board/message.html?id=2792505

Why Python?

• High Level

• Large Library

• “The library makes the language”

• We have our reasons.

As a glue language

• A high-level framework

• A mix of Python, C, C++, Fortran

Programmer Performance

• Programmers revere high-level languages like Python for it’s ability to
just work, instead of hacking C code all day

Performance is Misunderstood

• Most programs are I/O bound

• They’re mainly idle!

• If I/O is the bottleneck, the the overhead of an interpreter is less
meaningful.

Unless you’re CPU bound

• If you need CPU power, then extending with C code can be useful

• High performance in Python really comes down to using
programming in C

• There’s no shame in using the right tool for the right job.

No Concurrency

• Concurrency is not a solution around inefficient algorithms

• Focus on rewriting with a better algorithm, or using a language like
C

• A C extension might provide a Python script a 20x improvement in
speed vs. a marginal speedup using parallelization

Part 3: Threads

Threads

• Threads are the most common concurrency idiom

• An independent stream of execution

• It’s own stack, current instruction

• Inside a parent process

• Shares all resources with the main and accessory threads

• memory, files, network connectioncs

Single Thread

• A Python program is started

• Instructions are executed in a “main
thread”

$ python program.py
!

<statement>
<statement>

…
!

<main thread>

Multi-threading

• A Python program is started

• Instructions are executed in a “main
thread”

• A second thread is executed, running
in parallel with the main thread.

• Function foo() is executed

$ python program.py
!

statement
statement

…
!

create thread(foo) def foo():
 <statements>

Multi-threading

• A Python program is started

• Instructions are executed in a “main
thread”

• A second thread is executed, running
in parallel with the main thread.

• Function foo() is executed

$ python program.py
!

statement
statement

…
!

create thread(foo)
statement
statement

…
!

def foo():
 statement
 statement

…
!

Multi-threading

• A child thread terminates on return
or exit

• A thread is a “mini-process”, a form
of a task that runs independently
inside your program

$ python program.py
!

statement
statement

…
!

create thread(foo)
statement
statement

…
!

statement
statement

…
!

def foo():
 statement
 statement

…
!

return or exit

threading module

• The idiomatic method of accessing
threads in Python.

• Inherit threading.Thread and
override run()

• The content in run() executes in a
thread

import time
import threading

class CountdownThread(threading.Thread):
 def __init__(self,count):
 threading.Thread.__init__(self)
 self.count = count
 def run(self):
 while self.count > 0:
 print "Counting down", self.count
 self.count -= 1
 time.sleep(5)
 return

threading module

import time
import threading

class CountdownThread(threading.Thread):
 def __init__(self,count):
 threading.Thread.__init__(self)
 self.count = count
 def run(self):
 while self.count > 0:
 print "Counting down", self.count
 self.count -= 1
 time.sleep(5)
 return

t1 = CountdownThread(10) # Create the thread object
t1.start() # Launch the thread
t2 = CountdownThread(20) # Create another thread
t2.start() # Launch

threading module

• Functions as threads is an alternative
method

• The created Thread object assigns run
to the given function passed in as the
target named parameter.

import time
import threading

def countdown(count):
 while count > 0:
 print "Counting down", count
 count -= 1
 time.sleep(5)

t1 = threading.Thread(target=countdown,args=(10,))
t1.start()

Join The Club

• Threads run independently

• The join() method to wait for a
thread to exit

• Joining can only happen from outside
from outside threads, not the joining
thread.

t.start() # Launch a thread ... 
Do other work 
…

Wait for thread to finish 
t.join() # Waits for thread t to exit

What an excellent day for an
exorcism.

• Threads run in a daemon mode will
not prevent your program from hanging
on exit

• Good for background utility tasks that
require no cleanup — “Set it and forget
it!”

t.daemon = True
t.setDaemon(True)

easy-peasy(-lemon-squeezy)

• Starting threads is easy

• Making many thousands of threads is easy

• The whole idea of threads sounds like a dream!

• But really, it’s a nightmare in disguise…

• Keeping your program state coherent between many threads —
that’s really hard

Q: Why did the multithreaded chicken cross the road?
A: to To other side. get the

- Jason Whittington

Shared Data Between Threads

• All threads in a process share access to that process’ memory

• Non-deterministic

• Thread scheduling

• Access to shared data

• Most operations are non-atomic

Shared Data Conflicts

• Consider the shared memory address
in variable x

• We have two threads that modify the
value at that memory address

• Likely, we’ve corrupted that value in a
non-deterministic way

x = 0

Thread-1 Thread-2

-------- --------

 x = x+1 x = x-2

Shared Data Conflicts
Thread-1 Thread-2
-------- --------

 x = x+1 x = x-2

Thread-1 Thread-2
-------- --------
LOAD_GLOBAL 1 (x)
LOAD_CONST 2 (1)
 LOAD_GLOBAL 1 (x)
 LOAD_CONST 2 (1)
 BINARY_SUB
 STORE_GLOBAL 1 (x)

BINARY_ADD
STORE_GLOBAL 1 (x)

thread switch

thread switch

Example
x = 0 # A shared value

COUNT = 10000000
def foo():
 global x
 for i in xrange(COUNT):
 x += 1

def bar():
 global x
 for i in xrange(COUNT):
 x -= 1

t1 = threading.Thread(target=foo)
t2 = threading.Thread(target=bar)
t1.start(); t2.start()
t1.join(); t2.join()
print x # Expect result = 0

Data corruption due to thread
scheduling is called
a Race Condition

Part 4: Synchronization

Gentleman, synchronize your
Swatches

- Parker Lewis

Thread Synchronization

• Avoid race conditions (and losing chunks of your life trying to find
them) by using thread synchronization techniques and primitives

Thread Synchronization

• The threading library has the following options for thread
synchronization

• threading.Lock()

• threading.RLock()

• threading.Semaphore()

• threading.BoundedSemaphore()

• threading.Event()

• threading.Condition()

A Tour

• There are many options to choose from with subtleties that may
make it difficult to choose the right one for synchronization

Mutex Locks

Mutual Exclusion Locks

• The most commonly used synchronization primitive

m = threading.Lock()

• Used to synchronize threads as to allow only one thread permission
to modify shared data at a given moment

Mutual Exclusion Locks

• Basic Usage
m = threading.Lock()
m.acquire()
m.release()

• Only one thread can acquire a lock at a time

• Attempts to acquire by a second (or more) threads results in a
blocking action until the lock is released

Using Mutex Locks

• Used for creating a critical section
block

• Only one thread can execute in a
critical section at a time (i.e. lock
gives exclusive access)

x = 0

x_lock = threading.Lock()

Thread-1 Thread-2

-------- --------

 x_lock.acquire() x_lock.acquire()

 x = x+1 x = x-2

 x_lock.release() x_lock.release()

 Critical Section

Lock Management

• Always release your locks

• Non-linear flow-control can add pain
and suffering

• A Pythonic template for a critical
section should be used

x=0 
x_lock = threading.Lock()

Example critical section
x_lock.acquire()
try:
 statements using x
finally:
 x_lock.release()

Lock Management

• Python 2.6 and 3.0 improves the
semantics for dealing with locks and
critical sections

• The lock is acquired automatically, and
released when the block exits

x=0 
x_lock = threading.Lock()

Critical section
with x_lock:
 <statements using x>

Deadlocks

• Using nesting locks is a bad and
confusing idea

• Expect deadlocks in such situations!

x=0 
y=0 
x_lock = threading.Lock()
y_lock = threading.Lock()

with x_lock:
 <statements using x>
 ... 
 with y_lock:
 <statements using x and y>
 ...

Mutex Conclusions

• Like threading, locking is easy to do

• That is, until you need to identify and lock all parts of your code that
are critical for locking

• It’s another really tricky job

Reentrant Mutex Locks

Reentrant Mutex Lock

• RLock
m = threading.RLock() # Create a lock
m.acquire() # Acquire the lock
m.release() # Release the lock

It extends the normal mutex lock by allowing the lock to be
acquired multiple times by the same thread

• Each acquire() must be balanced by a matching release()

• Used commonly for locking code execution, rather than data access

RLock Example

• A monitor object

• Allows only one thread to execute an
method in a class at a time

• Methods can call other methods that
are holding the lock in the same thread

 class Foo(object):
 lock = threading.RLock()
 def bar(self):
 with Foo.lock:
 ...
 def spam(self):
 with Foo.lock:
 ...
 self.bar()
 ...

Semaphores

Counter-based Synchronization

• Semaphore is one of the oldest synchronization primitives in
computer science (Dijkstra)
m = threading.Semaphore(n) # Create a semaphore
m.acquire() # Acquire
m.release() # Release

• acquire() — if the counter is > 0, decrement by one and return
immediately. If it is == 0, then block and wait until someone calls
release()

• release() — increments the internal counter by one. If the counter is
zero when called, wake up a waiting thread as well.

Use cases

• Resource control

• Setting upper-bound limits for such things as network connections
or database accesses

• Signaling

• Can be used to signal threads into action

Resource Control Example

• Semaphore Resource Control

• Maximum of 5 threads are
executing this function at once.

• Other threads will wait until a
semaphore signals a release()

sema = threading.Semaphore(5)

def fetch_page(url):
 sema.acquire()
 try:
 u = urllib.urlopen(url)
 return u.read()
 finally:
 sema.release()

Thread Signaling Example

• Semaphore Thread Signaling

• acquire() and release() are in
two different threads and arbitrary
order

• Use case: Consumer-Producer
problems

done = threading.Semaphore(0)

Thread 1 Thread 2

... done.acquire() 
statements statements

statements statements

statements statements

done.release() ...

Bounded Semaphores

Semaphore Release Checks

• A minor variation of threading.Semaphore(n),
threading.BoundedSemaphore(n)

• An exception is thrown if too many release()’s are called, in which
case a ValueError exception is called

Events

Events

• Event Objects
e = threading.Event()
e.isSet() # Return True if event set
e.set() # Set event
e.clear() # Clear event
e.wait() # Wait for event

• Used if multiple threads are waiting for an event to occur

• A set event will unblock all waiting threads

• Commonly used for barriers and notifications

Events Example
init = threading.Event()

def worker():
 init.wait() # Wait until initialized
 statements
 ...

def initialize():
 statements # Setting up
 statements
 ...
 init.set() # Done initializing

Thread(target=worker).start() # Launch
workers
Thread(target=worker).start()
Thread(target=worker).start()
initialize() # Initialize

Events Example 2

def master():
 ...
 item = create_item()
 evt = Event()
 worker.send((item,evt))
 ...
 # Other processing
 ...
 ... 
 ... 
 ... 
 ... 
 # Wait for worker
 evt.wait()

def worker():
 item, evt = get_work()
 <processing>
 <processing>
 ...
 ...
 # Done
 evt.set()

Condition Variables

Conditions

• Condition Objects
cv = threading.Condition([lock])
cv.acquire() # Acquire the underlying lock
cv.release() # Release the underlying lock
cv.wait() # Wait for condition
cv.notify() # Signal that a condition holds
cv.notifyAll() # Signal all threads waiting

•Lock and Signaling

•The lock protects critical sections

•The signal notifies other threads that a state condition has changed

Conditions

items = []
items_cv = threading.Condition()

Producer Thread Consumer Thread
item = produce_item() with items_cv:
with items_cv: ...
 items.append(item) x = items.pop(0)
 # Do something with x
 ...

Conditions

items = []
items_cv = threading.Condition()

Producer Thread Consumer Thread
item = produce_item() with items_cv:
with items_cv: while not items:
 items.append(item) items_cv.wait()
 items_cv.notify() x = items.pop(0)
 # Do something with x
 ...

Conditions

Consumer Thread
with items_cv:
 while not items:
 items_cv.wait()
 x = items.pop(0)
Do something with x
...

• Before waiting, a lock needs to be
acquired

• Conditions are transient, and a
verification of the current state is
needed, served by the while loop

• wait() releases the lock during the
wait, and re-locks when woken\

Synchronization Conclusions

• Lock, RLock, Condition, Semaphore, and BoundedSemaphore
objects may be used as with statement context managers

• Synchronization primitives are a necessity to make life easy, but once
complexity is replaced with another

• Lots of places where things go wrong

• performance, deadlock, livelock, starvation, scheduling

http://docs.python.org/2/library/threading.html#threading.Lock
http://docs.python.org/2/library/threading.html#threading.RLock
http://docs.python.org/2/library/threading.html#threading.Condition
http://docs.python.org/2/library/threading.html#threading.Semaphore
http://docs.python.org/2/library/threading.html#threading.BoundedSemaphore
http://docs.python.org/2/reference/compound_stmts.html#with

Part 5: Queues

Part 6: Unraveled Threads

Bad News

• We’ve established threading as a hornets nest of confusion and
problems

• Locks, shared data, queues and synchronization primitives all
working together

• On top of that, Python has it’s own platform specific issues, major
ones

• Pathological performance!

Performance Example

• Consider this CPU-bound function
def count(n):
 while n > 0:
n -= 1

• Sequential Execution
count(100000000)
count(100000000)

•Threaded Execution
t1 = Thread(target=count,args=(100000000,))
t1.start()
t2 = Thread(target=count,args=(100000000,))
t2.start()

Unexpected Results

• From David Beazley, http://www.dabeaz.com

• Performance comparison

• Dual-Core 2Ghz Macbook, OS-X 10.5.6

Sequential : 24.6s 
Threaded :45.5s (1.8Xslower!)

• With one of the CPU cores disabled:
Threaded : 38.0s

http://www.dabeaz.com

Part 7: The Inside Story

Nature of Python Threads

• Python threads are real system threads (POSIX pthreads)

• Scheduled by the host kernel

• Python threads represent the threaded execution of the Python
interpreter process which is written in C

The GIL

• Only one Python thread can execute in the interpreter at a time

• The global interpreter lock carefully controls thread execution

• Ensures that each thread gets exclusive access to all interpreter
internals when running

I/O Bound GIL Behavior

• When a Python-based thread runs, it holds the GIL

• The GIL is released on any block I/O

• When a thread is forced to wait, an idle thread activates

• Cooperative multitasking
Copyright (C) 2009, David Beazley, http://www.dabeaz.com

GIL Behavior
• Whenever a thread runs, it holds the GIL

• However, the GIL is released on blocking I/O

85

I/O I/O I/O

rel
ea

se

ac
qu

ire

rel
ea

se

ac
qu

ire

ac
qu

ire

rel
ea

se

• So, any time a thread is forced to wait, other
"ready" threads get their chance to run

• Basically a kind of "cooperative" multitasking

run run run run

ac
qu

ire

CPU Bound GIL Behavior

• When a thread is CPU-bound, the interpreter periodically checks
every 100 interpreter “ticks”

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

CPU Bound Processing

• To deal with CPU-bound threads, the
interpreter periodically performs a "check"

• By default, every 100 interpreter "ticks"

86

CPU Bound
Thread Run 100

ticks
Run 100

ticks
Run 100

ticks

ch
ec

k
ch

ec
k

ch
ec

k

The Check Interval

• The check interval is independent of thread scheduling, where a
check is made every 100 ticks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Check Interval
• The check interval is a global counter that is

completely independent of thread scheduling

87

Main Thread
100 ticks ch

ec
k

ch
ec

k
ch

ec
k

100 ticks 100 ticks

Thread 2

Thread 3

Thread 4

100 ticks

• A "check" is simply made every 100 "ticks"

The Check Interval

• During this periodic check

• Signal handlers in the main thread execute if there are any pending
signals

• Release and reacquisition of the GIL

• This is how multiple CPU-bound threads get to run, by briefly
releasing the GIL, other threads get a chance to run.

Tick

• A Tick has some loose mapping to
Python interpreter instructions

def countdown(n):
 while n > 0:
 print n
 n -= 1

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

What is a "Tick?"
• Ticks loosely map to interpreter instructions

89

def countdown(n):
 while n > 0:
 print n
 n -= 1

>>> import dis
>>> dis.dis(countdown)
0 SETUP_LOOP 33 (to 36)
3 LOAD_FAST 0 (n)
6 LOAD_CONST 1 (0)
9 COMPARE_OP 4 (>)
12 JUMP_IF_FALSE 19 (to 34)
15 POP_TOP
16 LOAD_FAST 0 (n)
19 PRINT_ITEM
20 PRINT_NEWLINE
21 LOAD_FAST 0 (n)
24 LOAD_CONST 2 (1)
27 INPLACE_SUBTRACT
28 STORE_FAST 0 (n)
31 JUMP_ABSOLUTE 3
...

Tick 1

Tick 2

Tick 3

Tick 4

• Instructions in
the Python VM

Tock

• Ticks are not time-based

• Ticks don’t have consistent execution times

• Long operations can block all threads, trying hitting Ctrl-C

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Tick Execution
• Interpreter ticks are not time-based

• Ticks don't have consistent execution times

90

• Long operations can block everything
>>> nums = xrange(100000000)
>>> -1 in nums
False
>>>

1 tick (~ 6.6 seconds)

• Try hitting Ctrl-C (ticks are uninterruptible)
>>> nums = xrange(100000000)
>>> -1 in nums
^C^C^C (nothing happens, long pause)
...
KeyboardInterrupt
>>>

Scheduling Disaster

• Python does not have a thread scheduler

• No notion of thread priorities, preemption, round-robin scheduling,
etc.

• All thread scheduling is left to the host OS

GIL Implementation

• The GIL is just a mutex lock

• The Unix implementation is

• A POSIX unnamed semaphore

• or a pthreads condition variable

• All interpreter locking is based on signaling

• To acquire the GIL, check if it is free. If not, sleep and wait for a signal

• To release the GIL, free it and signal

CPU-bound Threads

• CPU-bound threads have horrible performance

• Why?

Signaling Overhead

• GIL thread signaling is the source of that

• After every 100 ticks, the interpreter

• Locks the mutex

• Signals on a condition variable/semaphore where another thread is
always waiting

• Because of waiting threads, extra pthreads processing and system
calls are triggered to deliver

Single-Core Measurements
• David Beazley, http://www.dabeaz.com

• Sequential Execution (OS-X, 1 CPU)

• 736 Unix system calls

• 117 Mach System Calls

• Two threads (OS-X, 1 CPU)

• 1149 Unix system calls

• ~ 3.3 Million Mach System Calls

http://www.dabeaz.com

Multiple-Core Measurements

• David Beazley, http://www.dabeaz.com

• Two threads (OS-X, 1 CPU)

• 1149 Unix system calls

• ~ 3.3 Million Mach System Calls

• Two threads (OS-X, 2 CPUs)

• 1149 Unix system calls

• ~9.5 Million Mach System calls

http://www.dabeaz.com

Multicore GIL Contention

• CPU-bound threads running on multi-core systems get scheduled
simultaneously on different processors, and there is a GIL storm

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Multicore GIL Contention
• With multiple cores, CPU-bound threads get

scheduled simultaneously (on different
processors) and then have a GIL battle

98

Thread 1 (CPU 1) Thread 2 (CPU 2)

Release GIL signal
Acquire GIL Wake

Acquire GIL (fails)
Release GIL
Acquire GIL

signal
Wake
Acquire GIL (fails)

run

run

run

• The waiting thread (T2) may make 100s of
failed GIL acquisitions before any success

GIL and C

• C/C++ extensions can release the GIL and run independently

• Once released, the C code shouldn’t do any state change in the
Python interpreter or Python objects

• The C code itself needs to be thread-safe

GIL and C

• It is through C extensions that Python can realize performance
parallel computing

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The GIL and C Extensions
• Having C extensions release the GIL is how

you get into true "parallel computing"

100

Thread 1:

Thread 2

Python
instructions

Python
instructions

C extension
code

GIL
rel

eas
e

GIL
acq

uir
e

Python
instructions

GIL
rel

eas
e

GIL
acq

uir
e

Releasing the GIL

• ctypes already releases the GIL when calling C code

• For custom C extensions, you use preprocessor macros
PyObject *pyfunc(PyObject *self, PyObject *args) {

 ...
 Py_BEGIN_ALLOW_THREADS
 // Threaded C code
 ...
 Py_END_ALLOW_THREADS
 ...
 }

Why the GIL

• Simplification of Python Interpreter Implementation

• Better suited for Python’s reference counting

• Simplifies use of C/C++ extensions, they don’t need to worry about
thread synchronization with the interpreter

Part 8:Threading Conclusion

Again, why threads?

• There are areas where threads are useful and perform well

I/O Bound Processing

• Threads are still useful for I/O bound processes

• e.g. A network server managing thousands of long-lived TCP
connections, with low CPU overhead

• This case is limited by the host OS’s ability to provided resources

• Most systems handle this kind of case just fine

I/O Bound Processing

• If everything is I/O bound, there is quick response time to any I/O
activity

• Python, as mentioned earlier, does not do the scheduling

• So, it’s behavior will mimic the performance of a C program with
a similar I/O boundedness

and Finally…

• Python threads are useful:

• If you use them for I/O bound processing only

• Limit CPU-bound processing to C extensions that release the GIL

• Threads are only one idiom for parallel processing.

• A discussion for another time…

Part 9:Processes and Messages

Part 10:Multiprocessing Module

Part 11:Alternatives

Part 12:Closing

References

