
Django
The Next Generation Bounty Hunt...err

Web Application Framework

My Experience

• I am NOT an experienced web
application developer.

• Mac pundit, UNIX guru

• I HATE web browser overload.

• Desktop Apps rule.

• Web Apps have their place.

So Why Bother

• Like I said, web apps have their place

• A web browser provides ability to
view, edit and modify fairly linear
documents.

• Google Apps is an abuse.

• We all have web browsers, and the
web is the generic starting point
for providing information via

What I have I tried

• PHP

• Yuck.

• Inelegant.

• Boring, but
functional.

• Lots of CMSs
built on it.

Plone

• An interesting
platform - Python
based.

• Complicated as all
heck.

• Breaks at the
slightest breeze.

• Result: I hated
using it.

TurboGears

• Finally, a
framework I
thought would beat
everything

• Pre-built parts -
widgets, easy
templating.

• Result: Widgets
never really worked
for me!

and now, Django.

• Django designed for
a publishing
environment.

• Prebuilt ‘apps’ for
back-end admin,
RSS, comments,
registration, etc.

• Excellent
documentation.

• Simple, but

Django is a high-level Python Web
framework that encourages rapid
development and clean, pragmatic

design.

• Object-relational mapper

• Automatic admin interface

• Elegant URL design

• Template system

• Cache system

• Internationalization

• Each attribute of the
model represents a
database field.

• Model metadata goes in
an inner class named
Meta.

• Metadata used for
admin site goes into an
inner class named
Admin.

• Django gives you an
automatically-generated
database-access API.

Object-relational mapper

from django.db import models

class Person(models.Model):
 first_name = models.CharField(max_length=30)
 last_name = models.CharField(max_length=30)

Valid Database Types:
postgresql_psycopg2
postgresql
mysql
sqlite3
ado_mssql

Automatic admin
interface

• The tedious problem
of providing an
admin interface
already solved.

• Helps provide a
clear distinction
between content
publishers and the
public.

Elegant URL design

• “Cruft-free URLs”

• Mappings done with RegEx to callback
functions.

• On match, passes a request object and
capture URL parameters.

• Easy reference in templates for perfect
URLs

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^articles/2003/$', 'news.views.special_case_2003'),
 (r'^articles/(\d{4})/$', 'news.views.year_archive'),
 (r'^articles/(\d{4})/(\d{2})/$', 'news.views.month_archive'),
 (r'^articles/(\d{4})/(\d{2})/(\d+)/$', 'news.views.article_detail'),
)

Template system

• Uses their own
templating system

• Template is simply a
text file, not limited
to XML, HTML. Can
be used for any text
format (e.g. e-mails,
CSV)

{% extends "base_generic.html" %}

{% block title %}{{ section.title }}{% endblock %}

{% block content %}
<h1>{{ section.title }}</h1>

{% for story in story_list %}
<h2>

 {{ story.headline|upper }}

</h2>
<p>{{ story.tease|truncatewords:"100" }}</p>
{% endfor %}
{% endblock %}

Sites that use Django
• lawrence.com - An

internationally
renowned local-
entertainment site

• washingtonpost.com -
The Washington Post's
growing selection of
innovative Web
database applications.

• chicagocrime.org -A
freely browsable
database of crimes
reported in Chicago.

• LJWorld.com - An
industry-leading
newspaper site.

• Tabblo -An innovative
photo-sharing site, with
a narrative twist.

• Toronto Life - Toronto's
city magazine.

• lawrencechamber.com -
A Chamber of
Commerce site that
doesn't suck.

Fin

• Django adheres to the DRY principle:
“Don’t Repeat Yourself”

• Its strengths:

• Pre-built ‘applications’

• Powerful templating

• Flexible database abstraction

Fin

• Weakness

• No official AJAX support yet.

• Designed to be tightly integrated
with Django’s templating system.

• It’s the web.

